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Abstract

In the present paper, a boundary value problem about the macroscopic response and its microscopic mechanism of a

representative spherical cell with a spherical microvoid under axisymmetric triaxial tension has been theoretically in-

vestigated. To capture the size effects of local plastic deformation in the matrix, the strain gradient constitutive theory

including the rotation and the stretch gradients developed by Fleck and Hutchinson [Strain gradient plasticity, in: J.W.

Hutchinson, T.Y. Wu (Eds.), Advance in Applied Mechanics, vol. 33, Academic Press, New York, 1997, p. 295] is

adopted. By means of the principle of minimum plasticity potential and the Lagrange multipliers method, the self-

contained displacement field within the matrix has been computationally determined. Based on these, a size-dependent

constitutive potential theory for porous material has been developed. The results indicate clearly that the microvoid

evolution predicted by the present constitutive model displays very significant dependences on the void size especially

when the radius a of microvoids is comparable with the intrinsic characteristic length l of the matrix. And when the void

radius a is much lager than l, the present model can retrogress automatically to the Gurson model improved by Wang

and Qin [Acta Mech. Solid. Sin. 10 (1989) 127, in Chinese].

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The fracture in ductile materials generally results from the nucleation, growth and coalescence of mi-

crovoids. In the above-mentioned three sequential stages, the void growth takes the longest period of time

and thus it is most important. Therefore, during the past thirty years, numerous theoretical models have

been developed to describe the growth and coalescence of voids in the ductile materials. McClintock (1968)

and Rice and Tracey (1969), respectively, investigated the growth of an isolated cylindrical void and a
spherical void embedded in infinite media. Inspired by the work of R–T, Huang (1991) further carried out a

more precise theoretical analysis on an infinite perfectly plastic solid containing a spherical void and found

the R–T model underestimated the void growth rates about 50%. At their heels, Lee and Mear (1992)
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further probed into the deformation of an incompressible power-law matrix containing a dispersion of

aligned spheroidal voids. As everyone knows, the above-mentioned various damage models were derived

from the infinite solids containing an isolated void as a result of ignoring the interaction of adjacent voids.

For this reason, Gurson (1977) creatively presented the concept of a cell model, which possesses a finite
volume and contains a spherical void, and theoretically developed a plastic potential function for a porous

material. Although the original Gurson model has a few limitations (Pardoen and Hutchinson, 2000), it was

the first to establish the internal relationship between the void evolution and plastic potential. In several

subsequent works, various important extensions to the Gurson model have been suggested. To consider the

influence of matrix strain hardening on the void evolution, Yamamoto (1978) roughly improved the

Gurson model by amending the mean flow stress of the matrix material. Tvergaard (1981, 1982) introduced

two adjustable parameters q1 and q2 to improve the original Gurson model. Following the same line as the

Gurson model, Wang and Qin (1989) analyzed in detail void growth in a power-hardening matrix and
obtained a macroscopic plastic potential for a porous material. Leblond et al. (1995) proposed a Gurson-

type model incorporating an improved description of the strain hardening effect. In addition, Tvergaard

and Needleman (1984) extended the Gurson model (GTN) to take account of the rapid loss of load carrying

capacity during void coalescence. The improved GTN model and several of its extensions have been widely

used to predict the ductile damage and fracture in metallic materials (Xia and Shih, 1995a,b, 1996; Ruggieri

et al., 1996; Faleskog et al., 1998; Gao et al., 1998a,b). The beauty of these models is that they clearly reveal

the key roles of the stress triaxiality and the effective plastic strain on void growth and coalescence.

However, a number of researches have convincingly indicated that the crack propagation rate predicted by
the classical damage models was rather sensitive to the finite element mesh adopted even if the FE mesh is

sufficiently refined. To solve this problem, Ba�zzant and Lin (1988) eloquently pointed out the importance of

the nonlocal damage mechanism and suggested a kind of nonlocal damage theory. The basic idea of the

nonlocal damage theory is that the evolution of the damage variable not only depends on the current value

of the state variables at this point, but also has close dependence on its weighted average value in a zone

surrounding this point. Based on this assumption, a scale parameter lc characterizing the region size is

introduced into the damage model. Several publications have demonstrated the ability of these nonlocal

damage models to reduce the mesh sensitivity (Pijaudier-Cabot and Ba�zzant, 1987; Sun and H€oonig, 1994;
Leblond et al., 1994; Tvergaard and Needleman, 1997), but the physical meaning of the scale parameter lc is
very unclear.

In recent years, the existence of a material length scale for plasticity is firmly supported by direct dis-

location simulations (Cleveringa et al., 1997, 1998, 1999a,b; Bittencourt et al., 2003) and extensive labo-

ratory experiments (Nix, 1989; De Guzman et al., 1993; Stelmashenko et al., 1993; Fleck et al., 1994; Lloyd,

1994; Ma and Clark, 1995; Poole et al., 1996; Nan and Clarke, 1996; Zhu et al., 1997, 1995; Mcelhaney

et al., 1998; Nix and Gao, 1998; Stolken and Evans, 1998; Suresh et al., 1999; Gao and Huang, 2003). There

is an intimate connection between size effects and gradients of plastic deformation, especially when the
characteristic length scale of un-uniform plasticity deformation is the order of micron or submicron. The

classic plastic constitutive relation cannot explain the size effects shown in experiments since they lack

the characteristic length scale. Just in the last five years, various strain gradient plasticity theories including

the length scale have been developed to describe the constitutive behavior of materials at the micron scale

(Fleck and Hutchinson, 1993, 1994, 1997, 2001; Gao et al., 1999; Gao and Huang, 2001; Huang et al.,

2000a,b; Acharya and Bassani, 2000; Acharya and Beaudoi, 2000). Although there exists rather notable

differences in the physical and mechanical backgrounds of these theories, most of these models give sat-

isfactory predictions in four kinds of typical microscale experiments such as the microtorsion (Fleck et al.,
1994), the microbend (Stolken and Evans, 1998), the microindentation (Nix and Gao, 1998) and particle-

reinforced metal-matrix composites (Lloyd, 1994). For porous materials, no direct experimental examin-

ations have been carried out to validate the size effects on plastic deformation in the vicinity of the

microvoids and the void growth, but there exists some indirect evidence indicating that smaller voids on the
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micron scale are more difficult to grow in comparison to larger voids on the millimeter scale (Fleck and

Hutchinson, 1997). As the first step to address the strain gradient theory for porous materials, Gologanu

et al. (1995) generalized the Gurson model to consider the effects of the macroscopic strain gradient on the

void evolution. However, since the matrix material is still modeled by the classic J2 plastic constitutive
relation, a persistent strain gradient effect results even when the void volume fraction is zero. Considering

the inevitable existence of the residual deformation in the matrix, Li et al. (2002, 2003) investigated the

growth and coalescence of voids in the matrix with a plastic gradient distribution. In order to bring the

issue of local strain gradient effect on the growth of a void to a close, Fleck and Hutchinson (1993) studied

the growth of a spherical void in an infinite medium using the couple-stress (CS) plasticity theory. However,

the assumed dominant deformation field driving the void expansion is spherically symmetric, therefore, the

displacement field in the vicinity of microvoid is irrotational inducing no any rotation gradient. As a result,

no significant size effects on void growth are captured by the CS plasticity theory. For this reason, Fleck
and Hutchinson (1997) developed the generalized strain gradient (SG) plasticity theory including all sec-

ond-order gradients of displacement components and affirmed that the growth rate of a smaller void is

much slower than that of a larger void. At their heels, based on the MSG theory (Gao et al., 1999) and TNT

theory (Gao and Huang, 2001), Huang et al. (2000a) and Gao and Huang (2001), respectively, investigated

the growth of a spherical void in an infinite medium subjected to remote spherically symmetric tension.

Added to these, to consider the interaction of adjacent microvoids in the matrix material, Shu (1998) studied

the deformation of a porous single crystal and its macroscopic stress carrying capacity based on the elasto-

viscoplastic SG crystal plasticity formulation. However, the above-mentioned works are either limited to the
cases in which only an isolated void in an infinite medium is considered or to the simple two-dimensional

(2D) case. To our knowledge, it is difficult to find intensive investigations on the size effects of void evolution

in porous materials subjected three-dimensional loadings in the existing literature.

Based on the above-mentioned background, we have been actively engaged in the development of a size-

dependent plasticity potential for porous materials. In another paper (Huang et al., 2002), we have analyzed

the response of a cell with a microvoid, following the same line of the Gurson model. But the displacement

field assumed is very simple and is not self-contained. To overcome the above limitation, in the present

paper, a displacement field with infinite terms satisfying the displacement compatibility equations is sug-
gested. By the principle of minimum plasticity potential and the Lagrange multipliers method, the unknown

coefficients in the series expansion of the displacement fields are numerically determined. Therefore, the

present displacement field not only meets the displacement compatibility equation and the displacement

boundary conditions, but also satisfies the equilibrium equations and thus is self-contained.

2. The plastic constitutive potential of porous materials

2.1. SG plasticity theory (Fleck and Hutchinson, 1997)

In the Cartesian reference coordinate system, the strain rate tensor _eeij and the SG rate tensor _ggijk are

related to the velocity components _uui by

_eeij ¼ ð _uui;j þ _uuj;iÞ=2 ð1Þ
and

_ggijk ¼ _uuk;ij ¼ _eeik;j þ _eejk;i � _eeij;k ð2Þ

The SG rate tensor _ggijk can be decomposed into two parts as

_ggijk ¼ _gg0
ijk þ _ggH

ijk ð3Þ

where _gg0
ijk and _ggH

ijk are, respectively, the deviatoric part and the hydrostatic part of _ggijk.
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For simplicity, elastic strain and plastic compressibility of the matrix are ignored. The condition of

incompressibility can be stated as

_eeii ¼ 0 ð4Þ

_ggH
ijk ¼ ðdik _ggjpp þ djk _ggippÞ=4 ¼ 0 ð5Þ

Further, the deviatoric SG rate can be decomposed into three orthogonal parts as (Smyshlyaev and Fleck,

1996)

_gg0
ijk ¼ _gg0ð1Þ

ijk þ _gg0ð2Þ
ijk þ _gg0ð3Þ

ijk ð6Þ

where

_gg0ð1Þ
ijk ¼ _gg0S

ijk � 1=5 dij _gg
0S
kpp

j
þ djk _gg

0S
ipp þ dki _gg

0S
jpp

k
ð7Þ

_gg0ð2Þ
ijk ¼ 1=6beikpejlm _gg0

lpm þ ejkpeilm _gg0
lpm þ 2 _gg0

ijk � _gg0
jki � _gg0

kijc ð8Þ

_gg0ð3Þ
ijk ¼ 1=6½�eikpejlm _gg0

lpm � ejkpeilm _gg0
lpm þ 2 _gg0

ijk � _gg0
jki � _gg0

kij
 þ 1=5½dij _gg
0S
kpp þ djk _gg

0S
ipp þ dki _gg

0S
jpp
 ð9Þ

In the above equations, eijk is the permutation tensor and _ggS
ijk is the symmetric part of _ggijk.

_gg0S
ijk ¼ b _gg0

ijk þ _gg0
jki þ _gg0

kijc=3 ð10Þ

In this work, the SG plasticity theory including the rotation and stretch gradients is adopted to describe the

elastic–plastic stress vs. strain relation of the matrix. According to Fleck and Hutchinson�s work (Fleck and

Hutchinson, 1997), the multiaxial SG constitutive equation under proportionally and monotonically in-

creasing deformation can be expressed as

re

r0

¼
_nne

_nn0

 !n

ð11Þ

where n and r0 are the strain hardening exponent and the reference stress, respectively, and _nn0 corresponds

to _nne as re ¼ r0. The re and _nne are the generalized effective stress and the generalized effective strain rate,

which can be defined as

r2
e ¼ 3=2r0

ijr
0
ij þ l�2

1 s0ð1Þijk s0ð1Þijk þ l�2
2 s0ð2Þijk s0ð2Þijk þ l�2

3 s0ð3Þijk s0ð3Þijk ð12Þ

and

_nn2
e ¼ 2=3 _ee0ij _ee

0
ij þ l21 _gg

0ð1Þ
ijk _gg0ð1Þ

ijk þ l22 _gg
0ð2Þ
ijk _gg0ð2Þ

ijk þ l23 _gg
0ð3Þ
ijk _gg0ð3Þ

ijk ð13Þ

where s0ðnÞijk is the deviatoric part of the high order stress tensor sðnÞijk ; l1, l2 and l3 are the intrinsic characteristic
length of matrix, respectively.

Based on the above definition, for proportionally and monotonically loading, the size-dependent con-

stitutive equations of the matrix under multiaxial stress and strain states can be further rewritten as

r0
ij ¼

2

3

re

_nne

_ee0ij ð14Þ

s0ðnÞijk ¼ re

_nne

l2n _gg
0ðnÞ
ijk ðn ¼ 1; 2; 3; the index nno sumÞ ð15Þ
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2.2. The macroscopic constitutive potential of porous materials

Introducing the high order stress tensor s and the SG rate tensor _gg, and noting that s is work rate

conjugate to _gg, the microscope plastic potential / of matrix can be expressed as

u ¼
Z

r0
ij d _ee

0
ij þ

Z
s0ð1Þijk d _gg0ð1Þ

ijk þ
Z

s0ð2Þijk d _gg0ð2Þ
ijk þ

Z
s0ð3Þijk d _gg0ð3Þ

ijk

¼
P

0

2 _nnn
0

Z
_nnn�1
e dð _ee2e þ l21 _gg

2
e1 þ l22 _gg

2
e2 þ l23 _gg

2
e3Þ ¼

r0

ðnþ 1Þ _nnn
0

_nnnþ1
e ð16Þ

where _eee ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2
_eeij _eeij

q
and _ggem ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ggðmÞ
ijk _ggðmÞ

ijk

q
m ¼ 1; 2; 3.

Self-evidently, the above plastic potential / can represent the constitutive behavior of the matrix. To

describe the macroscopic responds of porous materials, we can consider a representative spheroidal cell

with volume Vcell containing a spherical void. The macroscopic potential U of the porous material satisfying

the inside and outside boundary conditions of the representative cell, the continuum condition, the plastic

incompressibility of the matrix and the mechanical equilibrium equation can be stated as (Duva and

Hutchinson, 1984)

U ¼ 1

Vcell

Z
Vm

/dV ð17Þ

where Vm is the volume of matrix in the cell.

Inserting (16) into (17) yields:

U ¼ 1

Vcell

_nn0r0

ðnþ 1Þ

Z
Vm

_nne

_nn0

 !nþ1

dV ð18Þ

Duva and Hutchinson (1984) proposed that the macroscopic stresses can be related to the macroscopic

potential U by

X
ij
¼ oU

o _EEij

ð19Þ

3. The self-contained solution of a representative spherical cell with a spherical void

Many studies have already confirmed that the representative volume element (RVE) of the cell model

can rationally describe the internal relations between the macroscopic mechanical responses and the mi-

crostructure of materials (Gurson, 1977; Koplik and Needleman, 1988; Wang and Qin, 1989). Fig. 1 shows

the geometry of the spheroidal cell containing a spherical void, where a and b are the inside and outside

radii of the cell, respectively. For convenience, the rectangular coordinates ðx; y; zÞ and the spherical co-
ordinates ðr; h;uÞ are adopted.

3.1. The boundary value problem of the spheroidal cell

In the spherical coordinate system ðr; h;uÞ, the physical components of the strain rate tensor can be
written as
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_eerr ¼
o _uur

or

_eehh ¼
1

r
o _uuh

oh
þ _uur

r

_ee// ¼ 1

r sin h
o _uu/

o/
þ _uuh

r
ctgh þ _uur

r

_eerh ¼
1

2

o _uuh

or
� _uuh

r
þ 1

r
o _uur

oh

 !

8>>>>>>>>>>><
>>>>>>>>>>>:

ð20Þ

In the rectangular coordinate system ðx; y; zÞ, the SG rate tensor _ggijk and rotation gradient rate tensor _vvij

can be expressed as

_ggijk ¼ _uuk;ij ð21Þ

_vvij ¼
1

2
eits _uus;tj ¼

1

2
eits _ggtjs ð22Þ

So the physical components of the SG rate tensor and rotation gradient rate tensor in the spherical

coordinate system ðr; h;uÞ can be expressed respectively as

_ggijk ¼
ojðAkAiTkiÞ � AkAmTkmCm

ij � AmAiTmiC
m
kj

AiAjAk
ði; j; k ¼ r; h;uÞ ð23Þ

and

_vvij ¼
ojðAihiÞ � AmhmCm

ij

AiAj
ði; j; k;m ¼ r; h;uÞ ð24Þ

Here

Tij ¼
oj Ai _uui

� �
� Am _uumCm

ij

AiAj
ð25Þ

hi ¼
1

2
eijk

oj Ak _uuk

� �
Ai

ð26Þ

Fig. 1. Representative spherical cell with a spherical void: (a) representative cell model and (b) spherical coordinates frame.
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where Cm
ij is the second Christoffel symbol and eijk is the permutation tensor. The non-zero components of

Cm
ij in the spherical coordinate system ðr; h;uÞ are:

Cr
hh ¼ �r; Cr

uu ¼ �r sin2 h; Ch
uu ¼ � sin h cos h

Ch
hr ¼ Ch

rh ¼ 1
r ; Cu

ur ¼ Cu
ru ¼ 1

r ; Cu
uh ¼ Cu

hu ¼ ctgh

(
ð27Þ

For the spherical coordinates system ðr; h;uÞ, Ai can be expressed as

Ar ¼ 1; Ah ¼ r; A/ ¼ r sin h ð28Þ

To simplify the problem considered but not to lose generality, we assume that the outside boundary of

the spherical cell is loaded by the axisymmetric macroscopic strain field as follows:

_EE11 ¼ _EE22; _EE33 6¼ 0
_EEij ¼ 0; i 6¼ j

i; j
�

¼ x; y; z ð29Þ

Thus

_uu/ ¼ 0; _eer/ ¼ _eeh/ ¼ 0 ð30Þ

In the spherical coordinate system, the matrix plastic incompressibility can be stated as:

_eehh þ _ee// þ _eerr ¼ 0 ð31Þ

Inserting (20) into (31) obtains

o _uur

or
þ o _uuh

roh

 
þ _uur

r

!
þ _uuh

r
ctgh

 
þ _uur

r

!
¼ 0 ð32Þ

or

o

or
r2 _uur sin h
� �

þ o

oh
ðr _uuh sin hÞ ¼ 0 ð33Þ

Apparently, to automatically satisfy (33), _uur and _uuh can be formulated as

_uur ¼ � 1

r2 sin h
owðr; hÞ

oh

_uuh ¼
1

r sin h
owðr; hÞ

or

8><
>: ð34Þ

Without loss of generality, the function w can be assumed to be

wðr; hÞ ¼ wðr; hÞ þ ~wwðr; hÞ ð35Þ
where

wðr; hÞ ¼ A cos h þ BðrÞ sin 2h ð36Þ

~wwðr; hÞ ¼ _NN
X1
m¼1;3

~wwmðrÞ sin2 h cosm h ð37Þ

~wwmðrÞ ¼ a3
X1

k¼0;1=3;2=3

amkq
k ð38Þ
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q ¼ ða=rÞ3 ð39Þ

and _NN ¼ ð2=3Þð _EE33 � _EE11Þ
Inserting (35)–(39) into (34) yields

_uur ¼ _�uu�uur þ _~uu~uur

_uuh ¼ _�uu�uuh þ _~uu~uuh

�
ð40aÞ

where

_�uu�uur ¼ � 1

r2 sin h
owðr; hÞ

oh
¼ A

r2
� BðrÞ

r
ð1þ 3 cos 2hÞ

_�uu�uuh ¼
1

r sin h
owðr; hÞ

or
¼ B0ðrÞ

r
sin 2h

8>><
>>: ð40bÞ

_~uu~uur ¼ � 1

r2 sin h
o ~wwðr; hÞ

oh
¼ �

X1
m¼1;3

X1
k¼0;1=3

½amk
_NNq1þkrðcos hÞm�1ð2 cos2 h � m sin2 hÞ


_~uu~uuh ¼
1

r sin h
o ~wwðr; hÞ

or
¼ �

X1
m¼1;3

X1
k¼0;1=3

amk
_NNq1þkkr cosm h sin h

8>>>><
>>>>:

ð40cÞ

Considering the microvoid concentration is very dilute, the macroscopic high order stress and the SG on

the scale level of the representative cell are negligible. Therefore, the outside displacement boundary

condition of cell can be expressed approximately as

_UUi 
 _EEijXj at r ¼ b ð41Þ

For the axisymmetric case, (41) can be rewritten further as

_UU1 ¼ _EE11X1 ¼ _EE11b sin h cos/
_UU2 ¼ _EE22X2 ¼ _EE11b sin h cos/
_UU3 ¼ _EE33X3 ¼ _EE33b cos h

8><
>: ð42Þ

Transforming (42) to the spherical coordinates system ðr; h;uÞ yields

_UUr ¼ bð _EE11 sin
2 h þ _EE33 cos hÞ ¼ bð2 _EE11 þ _EE33Þ

3
þ bð _EE33 � _EE11Þ

6
ð1þ 3 cos 2hÞ

_UUh ¼ bð _EE11 � _EE33Þ sin h cos h ¼ b
2
ð _EE11 � _EE33Þ sin 2h

_UU/ ¼ 0

8>>>><
>>>>:

ð43Þ

Comparing (43) with (40) one can obtain

A ¼ b3 _EEm

BðbÞ ¼ �b3 _EEe=6
B0ðbÞ ¼ �b2 _EEe=2

8<
: ð44aÞ

and

_~uu~uurðbÞ ¼ 0; _~uu~uuhðbÞ ¼ 0 ð44bÞ
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or

~wwmðbÞ ¼ 0; ~ww0
mðbÞ ¼ 0 ð44cÞ

where _EEm ¼ 1
3
ð2 _EE11 þ _EE33Þ and _EEe ¼ _EE33 � _EE11 ¼ 3

2
_NN.

According to (44a), the function BðrÞ can be expressed as:

BðrÞ ¼ � r3

6
ð _EE33 � _EE11Þ ¼ � r3

6
_EEe ð45Þ

Substituting (44a) and (45) into (40b) yields

_�uu�uur ¼ b3 _EEm=r þ r _EEeð1þ 3 cos 2hÞ=6
_�uu�uuh ¼ �r _EEe sin 2h=2

�
ð46Þ

Substituting (46) into (20) yields

_�ee�eerr ¼ �2b3 _EEm=r3 þ _EEe=6ð1þ 3 cos 2hÞ
_�ee�eehh ¼ b3 _EEm=r3 þ _EEe=6ð1� 3 cos 2hÞ
_�ee�ee// ¼ b3 _EEm=r3 � _EEe=3
_�ee�eerh ¼ � sin 2h _EEe=2

8>>><
>>>:

ð47Þ

Substituting (40c) into (20) yields

_~ee~eerr ¼ _NN
P1

m¼1;3

P1
k¼0;1=3

amkqkþ1tm�1amk

_~ee~eehh ¼ _NN
P1

m¼1;3

P1
k¼0;1=3

amkqkþ1tm�1bmk

_~ee~ee// ¼ _NN
P1

m¼1;3

P1
k¼0;1=3

amkqkþ1tm�1cmk

_~ee~eerh ¼ _NN
2

P1
m¼1;3

P1
k¼0;1=3

amkqkþ1tm�2 sin hdmk

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð48aÞ

where

amk ¼ �ð3k þ 2Þ½m� ð2þ mÞt2

bmk ¼ ð3k þ 1Þm� ½3kðmþ 1Þ þ ð2þ mÞ
t2
cmk ¼ m� ð3k þ mþ 2Þt2
dmk ¼ �mðm� 1Þ þ ½ðmþ 1Þðmþ 2Þ þ 9kðk þ 1Þ
t2
t ¼ cos h

8>>>>><
>>>>>:

ð48bÞ

Substituting (46) into (23) and (24) one obtains the non-zero components of the tensor _ggijk and the tensor
_�vvij�vvij

_ggrrr ¼ 6b3 _EEm=r4

_gghhr ¼ _ggrhh ¼ _gghhr ¼ _ggr// ¼ _gg/r/ ¼ _gg//r ¼ �3b3 _EEm=r4

_�vv�vvij ¼ 0

8><
>: ð49aÞ
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Substituting (40c) to (23) and (24), we can obtain

_~gg~ggrrr ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�1D1mk=r

_~gg~ggrrh ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�2 sin hD2mk=r

_~gg~ggrhr ¼ _~gg~gghrr ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�2 sin hD3mk=r

_~gg~ggrhh ¼ _~gg~gghrh ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�1D4mk=r

_~gg~ggr// ¼ _~gg~gg/r/ ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�1D5mk=r

_~gg~gghhr ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�1D6mk=r

_~gg~gghhh ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�2 sin hD7mk=r

_~gg~ggh// ¼ ~gg/h/ ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�2 sin hD8mk=r

_~gg~gg//r ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkqkþ1tm�1D9mk=r

_~gg~gg//h ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamkq1þktm�2 sin hD10mk=r

_~vv~vvr/ ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamktm�2 sin hq1þkh1mk=2r

_~vv~vvh/ ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamktm�1q1þkh1mk=2r

_~vv~vv/r ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamktm�2 sin hq1þkð3þ 3kÞh1mk=2r

_~vv~vv/h ¼
P1

m¼1;3

P1
k¼0;1=3

_NNamktm�1q1þkh2mk=2r

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð49bÞ

Here

D1mk ¼ 3ð2þ 5k þ 3k2Þm� 3ð2þ 5k þ 3k2Þð2þ mÞt2

D2mk ¼ �9kð2þ 5k þ 3k2Þt2

D3mk ¼ �3mð1þ kÞð1� mÞ � 3ð1þ kÞð2þ 3k þ 3mþ m2Þt2

D4mk ¼ �mð1þ kÞð9k þ 3Þ þ 3ð1þ kÞð2þ 3k þ mþ 3kmÞt2

D5mk ¼ �3mð1þ kÞ þ 3ð1þ kÞð2þ 3k þ mÞt2

D6mk ¼ ðm3 þ 4m2 þ 8mþ 9kmþ 12k þ 8Þt2 þ ðm3 � 3m2 þ 2mÞt�2 � ð2m3 þ m2 þ 9kmþ 6Þ

D7mk ¼ mð2þ 3k � 2m� 3kmÞ þ ð4þ 12k þ 9k2 þ 6mþ 6kmþ 2m2 þ 3km2Þt2
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D8mk ¼ mð1� mÞ þ ðm2 þ 3mþ 3kmþ 3k þ 2Þt2

D9mk ¼ �mð2þ 3k þ mÞ þ ð4þ mÞð2þ 3k þ mÞt2

D10mk ¼ 3kð2þ 3k þ mÞt2

h1mk ¼ mð1� mÞ þ ðm2 þ 3m� 9k2 � 3k þ 2Þt2

h2mk ¼ ð2m3 þ m2 � 9k2 � 3kmþ 3mÞ � ðm3 þ 4m2 � 9k2m� 3kmþ 5m� 9k2 � 3k þ 2Þt2

� ðm3 � 3m2 þ 2mÞ=t2

According to matrix plastic incompressibility, we obtain

_ggH
ijk ¼

1

4
ðdik _ggjpp þ djk _ggippÞ ¼ 0 ð50aÞ

_~gg~ggH
ijk ¼

1

4
ðdik

_~gg~ggjpp þ djk
_~gg~ggippÞ ¼ 0 ð50bÞ

Substituting (49) and (50) to (7)–(10) yields

_gg0
ijk ¼ _gg0ð1Þ

ijk ¼ _ggijk; _gg
0ð2Þ
ijk ¼ _gg0ð3Þ

ijk ¼ 0 i; j; k ¼ r; h;/ ð51aÞ

and

_~gg~gg0ð1Þ
rrr ¼

P1
m¼1;3

P1
k¼0;1=3

_NNamktm�3q1þkf1mk

.
15r

_~gg~gg0ð1Þ
hrh ¼ _~gg~gg0ð1Þ

rhh ¼ _~gg~gg0ð1Þ
hhr ¼

P1
m¼1;3

P1
k¼0;1=3

_NNamktm�3q1þkf2mk

.
15r

_~gg~gg0ð1Þ
/r/ ¼ _~gg~gg0ð1Þ

r// ¼ _~gg~gg0ð1Þ
//r ¼

P1
m¼1;3

P1
k¼0;1=3

_NNamktm�3q1þkf3mk

.
15r

_~gg~gg0ð1Þ
hhh ¼

P1
m¼1;3

P1
k¼0;1=3

_NNamktm�2 sin hq1þkg1mk

.
15r

_~gg~gg0ð1Þ
rhr ¼ _~gg~gg0ð1Þ

hrr ¼ _~gg~gg0ð1Þ
rrh ¼

P1
m¼1;3

P1
k¼0;1=3

_NNamktm�2 sin hq1þkg2mk

.
15r

_~gg~gg0ð1Þ
/h/ ¼ _~gg~gg0ð1Þ

h// ¼ _~gg~gg0ð1Þ
//h ¼

P1
m¼1;3

P1
k¼0;1=3

_NNamktm�2 sin hq1þkg3mk

.
15r

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð51bÞ

where

f1mk ¼ �3t4ðm3 þ 43m2 þ 72m2k þ 36m2k2 þ 72k2 þ 144k þ 64Þ þ 3t2 2m3
�

þ 2m2 þ 4mð8þ 18k þ 9k2Þ
�

� 3ðm3 � 3m2 þ 2mÞ

f2mk ¼ t4 4m3
�

þ 15m2 þ ð99k2 þ 168k þ 62Þmþ 12ð8þ 18k þ 9k2Þ
�

� t2 8m3
�

þ 3mþ ð58þ 168k þ 99k2Þm
�
þ 4m3 � 12m2 þ 8m

f3mk ¼ t4
�
� m3 þ ð52� 48k � 9k2Þmþ 12ð8þ 18k þ 9k2Þ

�
� t2 2m3

�
� 3m2 � ð38þ 48k þ 9k2Þm

�
þ m3 � 3m2 þ 2m

g1mk ¼ 3t2 16
�

þ 60k þ 72k2 þ 27k3 þ 24mþ 21kmþ 8m2 þ 12km2
�
þ 3 8m
�

þ 12km� 8m2 � 12km2
�
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g2mk ¼ �t2 64
�

þ 240k þ 288k2 þ 108k3 þ 96mþ 99kmþ 32m2 þ 33km2
�

þ 33km2
�

þ 32m2 � 33km� 32m
�

g3mk ¼ t2 16
�

þ 60k þ 72k2 þ 27k3 þ 24mþ 36kmþ 8m2 � 3km2
�
þ 8m
�

� 3km� 8m2 þ 3km2
�

Substituting (22) to (13), we obtain the generalized effective strain rate

_nn2
e ¼

2

3
_ee0ij _ee

0
ij þ l21 _gg

0ð1Þ
ijk _gg0ð1Þ

ijk þ 4

3
l22

�
þ 8

5
l23

�
_vv0
ij _vv

0
ij þ

4

3
l22

�
� 8

5
l23

�
_vv0
ij _vv

0
ji ð52Þ

By fitting the experimental data from ultra-thin beams in bending (Stolken and Evans, 1998), thin wires in

torsion (Fleck et al., 1994), and microindentation (Stelmashenko et al., 1993; Ma and Clark, 1995; Nix,

1997), Begley and Hutchinson (1998) suggested

l1 ¼
1

8
l; l2 ¼

1

2
l; l3 ¼

ffiffiffiffiffi
5

24

r
l ð53Þ

where l is the characteristic length of matrix.

Substituting (53) into (52) yields

_nn2
e ¼

2

3
_ee0ij _ee

0
ij þ

l2

64
_gg0ð1Þ
ijk _gg0ð1Þ

ijk þ 2l2

3
_vv0
ij _vv

0
ij ð54Þ

According to (40a) and noting the plastic incompressibility, we can easily obtain

_ee0ij ¼ _eeij ¼ _�ee�eeij þ _~ee~eeij _gg0ð1Þ
ijk ¼ _gg0ð1Þ

ijk þ _~gg~gg0ð1Þ
ijk _vv0

ij ¼ _vvij ¼ _�vv�vvij þ _~vv~vvij ð55Þ

Substituting (55) into (54) obtains

_nn2
e ¼

2

3
ð_�ee�eeij þ _~ee~eeijÞð_�ee�eeij þ _~ee~eeijÞ þ

l2

64
ð _gg0ð1Þ

ijk þ _~gg~gg0ð1Þ
ijk Þð _gg

0ð1Þ
ijk þ _~gg~gg0ð1Þ

ijk Þ þ
2l2

3
ð _�vv�vvij þ _~vv~vvijÞð _�vv�vvij þ _~vv~vvijÞ ¼ _nn

2

eð1þ a�Þ ð56Þ

where

_nn
2

e ¼
2

3
_�ee�eeij _�ee�eeij þ

l2

64
_gg0ð1Þ
ijk

_gg0ð1Þ
ijk þ 2l2

3
_�vv�vvij
_�vv�vvij;

a� ¼
_~nn~nn
2

e þ 4
3
_�ee�eeij _~ee~eeij þ l2

32
_gg0ð1Þ
ijk

_~gg~gg0ð1Þ
ijk þ 4l2

3
_�vv�vvij
_~vv~vvij

_nn
2

e

and

_~nn~nn
2

e ¼
2

3
_~ee~eeij _~ee~eeij þ

l2

64
_~gg~gg0ð1Þ
ijk

_~gg~gg0ð1Þ
ijk þ 2l2

3
_~vv~vvij
_~vv~vvij

Substituting (56) into (18) and noting Vcell ¼ 4
3
pb3, we can easily obtain

U ¼ 1

Vcell

Z
Vm

udV ¼ 1

Vcell

_nn0r0

ðnþ 1Þ

Z
Vm

_nn
2

eð1þ a�Þ
_nn2
0

 !ðnþ1Þ=2

dV

¼ 3r0
_nn�n
0

2ðnþ 1Þb3p

Z p

0

sin hdh
Z b

a

_nn
ðnþ1Þ
e ð1þ a�Þðnþ1Þ=2r2 dr ð57Þ

If we assume a� � 1, ð1þ a�Þðnþ1Þ=2
can be expanded by Taylor series and can be approximately expressed as
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ð1þ a�Þðnþ1Þ=2 
 1þ nþ 1

2
a� ð58Þ

Substituting (58) into (57) yields

U ¼ 3r0
_nn�n
0

2ðnþ 1Þb3p

Z p

0

sin hdh
Z b

a

_nn
ðnþ1Þ
e r2 dr þ 3r0

_nn�n

4b3p

Z p

0

sin hdh
Z b

a

_nn
ðnþ1Þ
e a�r2 dr ð59Þ

For convenience, we introduce the following dimensionless factors

x ¼ 2A
_NNb3

¼ 3 _EEm

_EEe

x ¼ 2A
_NNr3

¼ x
b
r

� �3

x� ¼ x
f

f ¼ a
b

� �3
k ¼ l

a
ð60Þ

where f is the void volume fraction, k is the dimensionless length scale of the porous material relating to the

characteristic length l of matrix material and the radius a of microvoids.

According to (47)–(49) and (51), we can obtain

_�ee�ee2e ¼
2

3
_�ee�eeij _�ee�eeij ¼

4A2

r6
� A

r3
_NNhðtÞ þ _NN2 ð61aÞ

_~ee~ee2e ¼
2

3
_~ee~eeij _~ee~eeij ¼ _NN2

X1
m¼1;3

X1
k¼0;1=3

X1
n¼1;3

X1
l¼0;1=3

k1mknltmþn�4qkþlþ2amkanl ð61bÞ

_gg0ð1Þ
ijk

_gg0ð1Þ
ijk ¼ 90b6 _EE2

m

r8
ð61cÞ

_~gg~gg0ð1Þ
ijk

_~gg~gg0ð1Þ
ijk ¼ _NN2

X1
m¼1;3

X1
k¼0;1=3

X1
n¼1;3

X1
l¼0;1=3

k2mknltmþn�4qkþlþ2amkanl ð61dÞ

_�vv�vvij
_�vv�vvij ¼ 0 ð61eÞ

_~vv~vvij
_~vv~vvij ¼ _NN2

X1
m¼1;3

X1
k¼0;1=3

X1
n¼1:3

X1
k¼0;1=3

k3mnkltmþn�4qkþlþ2amkanl ð61fÞ

_�ee�eeij _~ee~eeij ¼ _NN2
X1
m¼1;3

X1
k¼0;1=3

J1mktm�1qkþ1amk ð61gÞ

_gg0ð1Þ
ijk

_~gg~gg0ð1Þ
ijk ¼ _NN2

X1
m¼1;3

X1
k¼0;1=3

J2mktm�1qkþ1amk ð61hÞ

_�vv�vvij
_~vv~vvij ¼ 0 ð61iÞ
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where

t ¼ cos h

hðtÞ ¼ 6t2 � 2

k1mnkl ¼
2

3
ðamkanl þ bmkbnl þ cmkcnlÞt2 � ð1� t2Þdmkdnl=2
� �

k2mknl ¼
1

64� 152
k2 x

x�

� �2=3 1

t2
ðf1mkf1nl þ 3f2mkf2nl þ 3f3mkf3nlÞ

�

þ ð1� t2Þðg1mkg1nl þ 3g2mkg2nl þ 3g3mkg3nlÞ
�

k3mknl ¼
1

6
k2 x

x�

� �2=3
1þ 9ð1þ kÞ2 � 9ð1þ kÞ2t2
h i

h1mkh1nl þ t�2h2mkh2nl
n o

J1mk ¼ �2amkxþ 2 ðbmk � dmkÞ þ ðamk � bmk þ dmkÞt2½ 


J2mk ¼
1

160
k2 x

x�

� �2=3 3

2
f3mk �

3

2
f2mk � f1mk

� �
x
.
t2

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Substituting (56), (60) and (61) into (59) leads to

U ¼ U þ ~UU ð62aÞ

and

�UU ¼ r0
_nn0

ðnþ 1Þ
_NN
_nn0

 !nþ1

�UU �; ~UU ¼ r0
_nn0

ðnþ 1Þ
_NN
_nn0

 !nþ1

~UU � ð62bÞ

where

�UU � ¼ x
2

Z 1

�1

dt
Z x�

x

Knþ1

x2
dx;

~UU � ¼ ðnþ 1Þx
4

X1
m¼1;3

X1
k¼0;1=3

X1
n¼1;3

X1
l¼0;1=3

Amkalamkanl

 
þ
X1
m¼1;3

X1
k¼0;1=3

Bmkamk

!
;

Amknl ¼
Z 1

�1

dt
Z x�

x

Kn�1ðk1mknl þ k2mknl þ k3mknlÞtmþn�4qkþlþ2

x2
dx;

Bmknl ¼
Z 1

�1

dt
Z x�

x

Kn�1ðJ1mk þ J2mkÞtm�1qkþ1

x2
dx;

K ¼
_nne

_NN
¼ x2
"

� x
2
hðtÞ þ 1þ 45

128
k2 x4

x�

� �2=3
#1=2

It is worth noting that the assumed displacement fields (40) only meet the displacement compatibility

condition. For the actual displacement field, it must additionally meet the mechanical equilibrium condition

and the displacement boundary conditions (44b) or (44c). This can be achieved by minimizing the plastic
potential U with the boundary constraint conditions (44c). To this end, the Lagrange multiplier method is

adopted to determine the undetermined coefficients amk.
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According to (60), the boundary conditions (44c) can be rewritten as follows:

X1
k¼0;1=3;2=3

amkf kþ1 ¼ 0
X1

k¼0;1=3;2=3

kamkf kþ1 ¼ 0; m ¼ 1; 3; 5; . . . ð63Þ

To make the plastic potential U minimum under the constraint conditions (63), the following governing

equations must be satisfied:

o U

 
þ
X1
m¼1;3

sm

X1
k¼0;1=3

amkf kþ1 þ
X1
m¼1;3

xm

X1
k¼0;1=3

kamkf kþ1

!,
oamk ¼ 0 ð64Þ

where sm and xm are the Lagrange multipliers, respectively.

Apparently, the relations (63) and (64) are a system of linear algebraic equations in the unknown co-

efficients amk. Once the coefficients amk are determined by numerical calculation, an approximate solution of

the actual displacement field can be obtained. To obtain the coefficients amk, the double series of the trial
field (40c) are truncated and the terms remaining in the approximate displacement fields correspond to

k ¼ 0; 1=3; . . . ; ðK � 1Þ=3 and m ¼ 1; 3; . . . ; ð2M � 1Þ. As a part of the routine to calculate the coefficients

amk, it is essential to perform accurate integrations of U over the volume Vm for the success of the above

method. To do so, the integral domain is divided into 200� 200 subdomains and in each subdomain the

third-order Gaussian integrations have been performed.

3.2. The constitutive potential of porous materials

Similar with the Gurson model, the constitutive potential of the porous material can be expressed as a

function of the macroscopic mean stress Rm and effective stress Re. For this purpose, we substitute (62) into

(19) and can obtain

Rm ¼ R11 þ R22 þ R33

3
¼ 1

3
2
oU

o _EE11

þ oU

o _EE33

� �
¼ 2

3

r0

ð1þ nÞ
_NN
_nn0

 !n
oð �UU � þ ~UU �Þ

ox

Re ¼ R33 � R11 ¼
r0

ð1þ nÞ
_NN
_nn0

 !n

1þ nð Þð �UU � þ ~UU �Þ � x
oð �UU � þ ~UU �Þ

ox

" #
8>>>>><
>>>>>:

ð65Þ

To obtain the generalized mean stress R0 and the mean strain rate _nn0 of the matrix material, the concept

of plastic work rate equality is introduced as

VmR0
_nn0 ¼

Z
Vcell

r0
ij _ee

0
ij

�
þ s0ð1Þijk _gg0ð1Þ

ijk þ s0ð2Þijk _gg0ð2Þ
ijk þ s0ð3Þijk _gg0ð3Þ

ijk

�
dV ¼ ðnþ 1Þ

Z
Vcell

udV ¼ ðnþ 1ÞVcellU

¼ VcellR0
_nn0

_NN
_nn0

 !nþ1

ð �UU � þ ~UU �Þ ð66Þ

Considering that the mean stress R0 and the mean strain rate _nn0 of the matrix material should satisfy the

plastic constitutive relation (11) and noting the Eq. (66), we obtain easily

R0

R0

� �
¼

_nn0

_nn0

 !n

¼
R0

_nn0Vcell
_NN
_nn0

� �nþ1

U �

Vm
_nn0R0

2
64

3
75

n

¼
_NN
_nn0

� �nþ1

U �

ð1� f Þ R0

r0

2
64

3
75

n

ð67aÞ

or
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R0 ¼
_NN
_nn0

 !n
U �

1� f

� �n=ðnþ1Þ

r0 ð67bÞ

where U � ¼ �UU � þ ~UU �.

Substituting (67b) into (65) yields

Rm

R0

¼
2
3

oU�

ox

1þ nð Þ U�
1�f

� �n=ð1þnÞ ¼
2

3a
oU �

ox

Re

R0

¼
ð1þ nÞU � � x oU�

ox

ð1þ nÞ U�
1�f

� �n=ð1þnÞ ¼
1

a
ð1þ nÞU � � x

oU �

ox

� �
8>>>>>><
>>>>>>:

ð68Þ

where a ¼ ð1þ nÞ U�

1�f

� �n=ð1þnÞ
.

Eliminating the additional parameter x from the formula (68), we can obtain the size-dependent plastic

potential of porous material as follows:

u
Re

R0

;
Rm

R0

; k; n; f
� �

¼ 0 ð69Þ

Obviously, it is difficult to explicitly express the potential function (69) as classical Gurson model. For
this reason, the Gaussian integration method must be adopted to calculate U � in the expression (68) and

thus obtain the yield loci u ¼ 0 or Re=R0 � Rm=R0.

Generally speaking, the precision of displacement field (40) directly depends on the terms selected. Fig. 2

compares the influences of the number of terms taken on the curves Re=R0 � Rm=R0. It can be seen easily

that, for the displacement field (40), the solution corresponding to K ¼ M ¼ 4 is in good agreement with the

solution corresponding to K ¼ M ¼ 3. This means that when K ¼ M ¼ 3, the solution is a very good ap-

proximation of the actual displacement field. If we carefully review the results of a two-terms solution (only

including the terms �uui in (40) thus not a self-contained displacement field) by Huang et al. (2002), it is easy
to see that although the two-terms solution is not self-contained, it is accurate enough. This powerfully

proves that the assumption a� � 1 made in the formula (58) is reasonable.

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

K=4,M=4
K=3,M=3

n=0.1, λ=1.0,f
0
=0.001

Fig. 2. The influences of the number of terms taken in (40) on the plasticity potential.
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Fig. 3 shows the influences of the dimensionless characteristic length k and the power-hardening exponent

n on the macroscopic yield loci Re=R0 � Rm=R0 of the porous materials. For the purposes of comparison, the
results corresponding to the Gurson model are also displayed together. From Fig. 3, it can be easily seen that

the dimensionless length factors k have very obvious influences on the yield loci Re=R0 � Rm=R0 especially

when the triaxial stress levels Rm=R0 are higher. On the other hand, for the same triaxial stress level, with the

dimensionless length factors k ¼ l=a increasing, the corresponding yield stress Re=R0 becomes higher. This

means that, for a fixed void volume fraction f0, the porous materials with smaller voids possess higher yield

stress, especially when the void size a is comparable with the characteristic length l.
As everyone knows, the void growth can be described by x� ¼ x

f ¼ _VVv
_EEeVv

(here Vv denotes the volume of

void). Fig. 4 shows the influences of the dimensionless length factor k ¼ l=a on the growth of the void. The

Fig. 3. The effects of void size on the plasticity potentials for: (a) n ¼ 0:1 and (b) n ¼ 0:2.
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Fig. 4. The effects of void size on the void growth for: (a) n ¼ 0:1 and (b) n ¼ 0:2.
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results associated with the Gurson model and R–T model are also presented together. For a fixed initial

void volume fraction f0, it is not difficult to see a substantial reduction of the void growth rate with k ¼ l=a
increasing. This is to say that the void growth is size dependent, and the growth rate of smaller voids is

slower than that of larger voids. The classical plastic damage theories cannot predict the size dependence of
the void growth since they do not involve any intrinsic material length scale. Added to this, the void growth

rates predicted by the classical size-independent damage model are higher than that given by the present

scale-dependent damage model.

4. Summary

In the present paper, we have been actively engaged in the development of a size-dependent plastic

potential for porous materials. Following the same line of thought as the Gurson model, the macroscopic

responses of a representative spherical cell under remote axisymmetric triaxial tension have been carefully

investigated. To capture the size effects of local plastic deformation within the matrix, the SG constitutive

theory including the rotation and the stretch gradients by Fleck and Hutchinson (1997) has been adopted.

By means of the principle of minimum plasticity potential, the displacement field satisfying the equilibrium

equations, displacement compatibility equations and displacement boundary conditions has been com-

putationally determined by the Lagrange multiplies method. Based on this, we have obtained a size-de-
pendent plastic potential for a porous material and examined the size effect on the void growth. The results

show clearly that the void size has very important influences on the growth of spherical void, especially

when the radius a of the microvoid is comparable with the intrinsic characteristic length l of matrix. In

summary, the originality of this work consists of generalizing the classical Gurson model to include the size

effects on the void evolution and the flow stress of porous materials.

It is worth pointing out that the present model is based on the assumption that the macroscopic higher

order strain or stress on the size scale of the representative cell can be ignored. This is true when the initial

void volume fraction f0 is low and the size of the cell is large. Therefore, the present model is especially
applicable to the case in which the size of void is small and the microvoids in material are very dilute.

Fortunately, with plastic deformation increasing, the microvoids with smaller size will grow gradually.

Once the radius of microvoid is much larger than the intrinsic characteristic length l of the matrix material,

the present model will automatically reduce to the size-independent Gurson model improved by Wang and

Qin (1989). Therefore, no matter whether the size of voids is small or large, the present model can provide a

better description of the growing process of microvoids.
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