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Abstract

In the present paper, a boundary value problem about the macroscopic response and its microscopic mechanism of a
representative spherical cell with a spherical microvoid under axisymmetric triaxial tension has been theoretically in-
vestigated. To capture the size effects of local plastic deformation in the matrix, the strain gradient constitutive theory
including the rotation and the stretch gradients developed by Fleck and Hutchinson [Strain gradient plasticity, in: J.W.
Hutchinson, T.Y. Wu (Eds.), Advance in Applied Mechanics, vol. 33, Academic Press, New York, 1997, p. 295] is
adopted. By means of the principle of minimum plasticity potential and the Lagrange multipliers method, the self-
contained displacement field within the matrix has been computationally determined. Based on these, a size-dependent
constitutive potential theory for porous material has been developed. The results indicate clearly that the microvoid
evolution predicted by the present constitutive model displays very significant dependences on the void size especially
when the radius a of microvoids is comparable with the intrinsic characteristic length / of the matrix. And when the void
radius a is much lager than /, the present model can retrogress automatically to the Gurson model improved by Wang
and Qin [Acta Mech. Solid. Sin. 10 (1989) 127, in Chinese].
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The fracture in ductile materials generally results from the nucleation, growth and coalescence of mi-
crovoids. In the above-mentioned three sequential stages, the void growth takes the longest period of time
and thus it is most important. Therefore, during the past thirty years, numerous theoretical models have
been developed to describe the growth and coalescence of voids in the ductile materials. McClintock (1968)
and Rice and Tracey (1969), respectively, investigated the growth of an isolated cylindrical void and a
spherical void embedded in infinite media. Inspired by the work of R-T, Huang (1991) further carried out a
more precise theoretical analysis on an infinite perfectly plastic solid containing a spherical void and found
the R-T model underestimated the void growth rates about 50%. At their heels, Lee and Mear (1992)
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further probed into the deformation of an incompressible power-law matrix containing a dispersion of
aligned spheroidal voids. As everyone knows, the above-mentioned various damage models were derived
from the infinite solids containing an isolated void as a result of ignoring the interaction of adjacent voids.
For this reason, Gurson (1977) creatively presented the concept of a cell model, which possesses a finite
volume and contains a spherical void, and theoretically developed a plastic potential function for a porous
material. Although the original Gurson model has a few limitations (Pardoen and Hutchinson, 2000), it was
the first to establish the internal relationship between the void evolution and plastic potential. In several
subsequent works, various important extensions to the Gurson model have been suggested. To consider the
influence of matrix strain hardening on the void evolution, Yamamoto (1978) roughly improved the
Gurson model by amending the mean flow stress of the matrix material. Tvergaard (1981, 1982) introduced
two adjustable parameters ¢; and ¢, to improve the original Gurson model. Following the same line as the
Gurson model, Wang and Qin (1989) analyzed in detail void growth in a power-hardening matrix and
obtained a macroscopic plastic potential for a porous material. Leblond et al. (1995) proposed a Gurson-
type model incorporating an improved description of the strain hardening effect. In addition, Tvergaard
and Needleman (1984) extended the Gurson model (GTN) to take account of the rapid loss of load carrying
capacity during void coalescence. The improved GTN model and several of its extensions have been widely
used to predict the ductile damage and fracture in metallic materials (Xia and Shih, 1995a,b, 1996; Ruggieri
et al., 1996; Faleskog et al., 1998; Gao et al., 1998a,b). The beauty of these models is that they clearly reveal
the key roles of the stress triaxiality and the effective plastic strain on void growth and coalescence.
However, a number of researches have convincingly indicated that the crack propagation rate predicted by
the classical damage models was rather sensitive to the finite element mesh adopted even if the FE mesh is
sufficiently refined. To solve this problem, Bazant and Lin (1988) eloquently pointed out the importance of
the nonlocal damage mechanism and suggested a kind of nonlocal damage theory. The basic idea of the
nonlocal damage theory is that the evolution of the damage variable not only depends on the current value
of the state variables at this point, but also has close dependence on its weighted average value in a zone
surrounding this point. Based on this assumption, a scale parameter /. characterizing the region size is
introduced into the damage model. Several publications have demonstrated the ability of these nonlocal
damage models to reduce the mesh sensitivity (Pijaudier-Cabot and Bazant, 1987; Sun and Honig, 1994;
Leblond et al., 1994; Tvergaard and Needleman, 1997), but the physical meaning of the scale parameter /.. is
very unclear.

In recent years, the existence of a material length scale for plasticity is firmly supported by direct dis-
location simulations (Cleveringa et al., 1997, 1998, 1999a,b; Bittencourt et al., 2003) and extensive labo-
ratory experiments (Nix, 1989; De Guzman et al., 1993; Stelmashenko et al., 1993; Fleck et al., 1994; Lloyd,
1994; Ma and Clark, 1995; Poole et al., 1996; Nan and Clarke, 1996; Zhu et al., 1997, 1995; Mcelhaney
et al., 1998; Nix and Gao, 1998; Stolken and Evans, 1998; Suresh et al., 1999; Gao and Huang, 2003). There
is an intimate connection between size effects and gradients of plastic deformation, especially when the
characteristic length scale of un-uniform plasticity deformation is the order of micron or submicron. The
classic plastic constitutive relation cannot explain the size effects shown in experiments since they lack
the characteristic length scale. Just in the last five years, various strain gradient plasticity theories including
the length scale have been developed to describe the constitutive behavior of materials at the micron scale
(Fleck and Hutchinson, 1993, 1994, 1997, 2001; Gao et al., 1999; Gao and Huang, 2001; Huang et al.,
2000a,b; Acharya and Bassani, 2000; Acharya and Beaudoi, 2000). Although there exists rather notable
differences in the physical and mechanical backgrounds of these theories, most of these models give sat-
isfactory predictions in four kinds of typical microscale experiments such as the microtorsion (Fleck et al.,
1994), the microbend (Stolken and Evans, 1998), the microindentation (Nix and Gao, 1998) and particle-
reinforced metal-matrix composites (Lloyd, 1994). For porous materials, no direct experimental examin-
ations have been carried out to validate the size effects on plastic deformation in the vicinity of the
microvoids and the void growth, but there exists some indirect evidence indicating that smaller voids on the
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micron scale are more difficult to grow in comparison to larger voids on the millimeter scale (Fleck and
Hutchinson, 1997). As the first step to address the strain gradient theory for porous materials, Gologanu
et al. (19995) generalized the Gurson model to consider the effects of the macroscopic strain gradient on the
void evolution. However, since the matrix material is still modeled by the classic J, plastic constitutive
relation, a persistent strain gradient effect results even when the void volume fraction is zero. Considering
the inevitable existence of the residual deformation in the matrix, Li et al. (2002, 2003) investigated the
growth and coalescence of voids in the matrix with a plastic gradient distribution. In order to bring the
issue of local strain gradient effect on the growth of a void to a close, Fleck and Hutchinson (1993) studied
the growth of a spherical void in an infinite medium using the couple-stress (CS) plasticity theory. However,
the assumed dominant deformation field driving the void expansion is spherically symmetric, therefore, the
displacement field in the vicinity of microvoid is irrotational inducing no any rotation gradient. As a result,
no significant size effects on void growth are captured by the CS plasticity theory. For this reason, Fleck
and Hutchinson (1997) developed the generalized strain gradient (SG) plasticity theory including all sec-
ond-order gradients of displacement components and affirmed that the growth rate of a smaller void is
much slower than that of a larger void. At their heels, based on the MSG theory (Gao et al., 1999) and TNT
theory (Gao and Huang, 2001), Huang et al. (2000a) and Gao and Huang (2001), respectively, investigated
the growth of a spherical void in an infinite medium subjected to remote spherically symmetric tension.
Added to these, to consider the interaction of adjacent microvoids in the matrix material, Shu (1998) studied
the deformation of a porous single crystal and its macroscopic stress carrying capacity based on the elasto-
viscoplastic SG crystal plasticity formulation. However, the above-mentioned works are either limited to the
cases in which only an isolated void in an infinite medium is considered or to the simple two-dimensional
(2D) case. To our knowledge, it is difficult to find intensive investigations on the size effects of void evolution
in porous materials subjected three-dimensional loadings in the existing literature.

Based on the above-mentioned background, we have been actively engaged in the development of a size-
dependent plasticity potential for porous materials. In another paper (Huang et al., 2002), we have analyzed
the response of a cell with a microvoid, following the same line of the Gurson model. But the displacement
field assumed is very simple and is not self-contained. To overcome the above limitation, in the present
paper, a displacement field with infinite terms satisfying the displacement compatibility equations is sug-
gested. By the principle of minimum plasticity potential and the Lagrange multipliers method, the unknown
coefficients in the series expansion of the displacement fields are numerically determined. Therefore, the
present displacement field not only meets the displacement compatibility equation and the displacement
boundary conditions, but also satisfies the equilibrium equations and thus is self-contained.

2. The plastic constitutive potential of porous materials
2.1. SG plasticity theory (Fleck and Hutchinson, 1997)

In the Cartesian reference coordinate system, the strain rate tensor ¢é; and the SG rate tensor Ny are
related to the velocity components #; by

&y = () +1j;)/2 (1)
and

Nije = Wiy = &k + Epi — &k (2)
The SG rate tensor 7, can be decomposed into two parts as

Nij = ’7;,'1( + ngk (3)

where 1, and ’;ng are, respectively, the deviatoric part and the hydrostatic part of ;.
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For simplicity, elastic strain and plastic compressibility of the matrix are ignored. The condition of
incompressibility can be stated as

éii == 0 (4)
’12{]{ = (51‘](’;’][717 + 5]7(];’[[7[))/4 = 0 (5)

Further, the deviatoric SG rate can be decomposed into three orthogonal parts as (Smyshlyaev and Fleck,
1996)

i = iy e+ iy (6)
where

i = il = /5|0, + Ssetly, + il (7)

'755? =1/6 Leikpeflnl’;lllpm + ejkﬁe”mﬁ;pm + Zﬁ;jk - ﬁ}ki - '7;<sz (8)

'Ifﬁ;? = 1/6[—eipejimtipm — €iipCitmlpm + 2y — e — i) + 1/5[0is11fe, + Sy, + Suitiy, ) 9)

In the above equations, e;; is the permutation tensor and i/f'/.k is the symmetric part of 7.

;/Iljk = I_nljk + r’jk! + nkUJ/3 (10)

In this work, the SG plasticity theory including the rotation and stretch gradients is adopted to describe the
elastic—plastic stress vs. strain relation of the matrix. According to Fleck and Hutchinson’s work (Fleck and
Hutchinson, 1997), the multiaxial SG constitutive equation under proportionally and monotonically in-
creasing deformation can be expressed as

O &
= 11
- (5) (n

where n and o are the strain hardening exponent and the reference stress, respectively, and 50 corresponds
to fe as g, = 0g. The g, and &, are the generalized effective stress and the generalized effective strain rate,
which can be defined as

6 - 3/26 6 +l ‘Cl]k z]k +l Tz]k) l]k +l Tl/k>‘[;§z> (12)

and

é - 2/38/ 8, + erlljk nl}k lanjk ﬁl/k l?”t}k ’;Iljk) (13)

where ‘El k is the deviatoric part of the high order stress tensor oy 1, [» and /5 are the intrinsic characteristic
length of matrix, respectively.
Based on the above definition, for proportionally and monotonically loading, the size-dependent con-

stitutive equations of the matrix under multiaxial stress and strain states can be further rewritten as

ljk’

, 203,

0y = 3 ée (14)

T;/k = l (n =1,2,3, the index nno sum) (15)

5 nt/k
e
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2.2. The macroscopic constitutive potential of porous materials

Introducing the high order stress tensor = and the SG rate tensor #, and noting that t is work rate
conjugate to #, the microscope plastic potential ¢ of matrix can be expressed as

. 2) 4.2 3)
¢ = /O-:’jd{;;j—i_/ Tijk d”z;k /T?ﬁk) dﬂfﬁ-k) +/ :ﬁk d”yk

/5’1 ld (& + 11'7e1 2’7e2 + 13’7e3) fﬂﬂ (16)
250 0

where & = /3¢, and #,, = /Al 0y m=1,2,3.

Self-evidently, the above plastic potential ¢ can represent the constitutive behavior of the matrix. To
describe the macroscopic responds of porous materials, we can consider a representative spheroidal cell
with volume V. containing a spherical void. The macroscopic potential @ of the porous material satisfying
the inside and outside boundary conditions of the representative cell, the continuum condition, the plastic
incompressibility of the matrix and the mechanical equilibrium equation can be stated as (Duva and
Hutchinson, 1984)

(n+ )6

/V ¢pdv (17)

cell

where 7}, is the volume of matrix in the cell.
Insertmg (16) into (17) yields:

. . n+l
_ 1 &oop g
- (E) v g

Duva and Hutchinson (1984) proposed that the macroscopic stresses can be related to the macroscopic
potential @ by

0P
Z:@ (19)

i

3. The self-contained solution of a representative spherical cell with a spherical void

Many studies have already confirmed that the representative volume element (RVE) of the cell model
can rationally describe the internal relations between the macroscopic mechanical responses and the mi-
crostructure of materials (Gurson, 1977; Koplik and Needleman, 1988; Wang and Qin, 1989). Fig. 1 shows
the geometry of the spheroidal cell containing a spherical void, where a and b are the inside and outside
radii of the cell, respectively. For convenience, the rectangular coordinates (x,y,z) and the spherical co-
ordinates (r, 0, ¢) are adopted.

3.1. The boundary value problem of the spheroidal cell

In the spherical coordinate system (r,0, ¢), the physical components of the strain rate tensor can be
written as
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1

Fig. 1. Representative spherical cell with a spherical void: (a) representative cell model and (b) spherical coordinates frame.

: O,
T o
10 i
000
1 Oiy (20)

: + 20 g0 4+
& = —_— —_
" rsin 0 fl) ng r

o1 (2 i 100
2\ or r r 00

In the rectangular coordinate system (x, y,z), the SG rate tensor #,; and rotation gradient rate tensor y;;
can be expressed as

ik = ki -
_ 1 . 1
Xy = Eemus,,‘/ = Eeirsrltjs >

So the physical components of the SG rate tensor and rotation gradient rate tensor in the spherical
coordinate system (r, 0, ¢) can be expressed respectively as

a/(AkAiTki) - AkAmTkmF?; - AmAiTmiF]’?/‘

’/Iijk = AiAjAk (lvjak =r 07 (P) (23)
and

. aj(Alel) _Ameml—‘;r; L.

Xij_ AiAj (l,],k,m—r,@,(p) (24)
Here

. (i) = Awitn I s

ij = A,'Aj ( )
1 aj (Akilk)
0,‘ = _e,'jk (26)

2 4;
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where I'; is the second Christoffel symbol and e;; is the permutation tensor. The non-zero components of
I';; in the spherical coordinate system (r,0, ) are:

Iy=—r, I =—rsin®0, I’ = —sinfcosd
30 0 1 o ] ) 1 ” P ® (27)
FHr:Fr9:;7 Frpr:Fr(/):;7 FrpH:FH(/J:CtgH
For the spherical coordinates system (r, 6, @), A; can be expressed as
A4, =1, Ag=r, Ay,=rsinb (28)

To simplify the problem considered but not to lose generality, we assume that the outside boundary of
the spherical cell is loaded by the axisymmetric macroscopic strain field as follows:

Ey =En E337'50 -
. ) = 2
{EU —0. i+ hj=xyz2 (29)
Thus
ity =0, &y =6y =0 (30)

In the spherical coordinate system, the matrix plastic incompressibility can be stated as:
éﬁ() + é(b(b + érr =0 (31)
Inserting (20) into (31) obtains

e () (et ) <o o
or
% (rzu,. sin 9) + % (ritg sin 0) = 0 (33)
Apparently, to automatically satisfy (33), &, and iy can be formulated as
P 1 OY(r,0)
e g

y = —
" rsing  or
Without loss of generality, the function ¥ can be assumed to be

Y(r,0) = P (r,0) + 4 (r,0) (35)
where
V(r,0) = Acos 0 + B(r) sin 20 (36)
Y(r,0) =5 i W, (r) sin® 0 cos” 0 (37)
m=1,3
U, (r) = d Zoo: @i p* (38)

k=0,1/32/3
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p=(a/r)’ (39)
and Z = (2/3)(Es; — Eyy)
Inserting (35)—(39) into (34) yields

{ iy = il + iy (40a)
Uy = ue + ug

where
i, = b oy (r.0) = é—ﬂ(l + 3cos20)
" r2sin0@ 00 2oy (40b)
_ 1 w0 ( )
“rsin0 o sin 20
. 1 a T 00 00
Uy = ——5—— Z Z amEp" ™ r(cos )" (2 cos® O — msin® )]
72sin 0 oy (400)
1 oy(r, ) O Ltk .
= = k " 0 0
Lot ZZ/ i cos s

Considering the microvoid concentration is very dilute, the macroscopic high order stress and the SG on
the scale level of the representative cell are negligible. Therefore, the outside displacement boundary
condition of cell can be expressed approximately as

For the axisymmetric case, (41) can be rewritten further as

Ul :EIIXI :ElleiHQCOS(b
Uz =E22X2 ZEllb Sil’leCOS(b (42)
l.]j; :E33/Y3 :E33bCOSQ

Transforming (42) to the spherical coordinates system (r, 0, ¢) yields

b(2E11 +E33) i b(E33 _Ell)

U = b(E” sin® 0 + E33 cos 0) = 3 G

(1 +3cos20)

Up = b(Ey, — E33)sin0cos 0 = g(E” — E33)sin20 (43)
Uy, =0
Comparing (43) with (40) one can obtain
A=bE,
B(b) = —b°E, /6 (44a)

B'(b) = —b’E./2
and

ih,(b) =0, ty(b) =0 (44b)
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or

U (b) = 0, ¥, (b) =0
where Em :%(2E11 +E33) and Ee = E33 _Ell

According to (44a), the function B(r) can be expressed as:

r3 . . r3.
B(}’) = 7E(E33 7E11) = 7gEe

Substituting (44a) and (45) into (40b) yields

{ il, = B’E, /r + rE.(1 + 3cos 20) /6
iy = —rE.sin20/2
Substituting (46) into (20) yields
&, = —2b°E,,/r* + E./6(1 + 3 cos 20)
& = b’E, /r* + E./6(1 — 3cos20)
§¢¢ = b3Em/V3 — Ee/3
&9 = — sin 20E, /2

Substituting (40c) into (20) yields

. . o0
L& k+1m—1
&y = 2 Z Z Ak P " Ak
m=1,3k=0,1/3
SRS k1 m—1
o e
Go =53 D amp " Py
m=1,3k=0,1/3
- k+1m—1
o e
Epp =E D D amp "y
m=1,3k=0,1/3
. ;- e k+1,m—2
s & 2
&g =% . D, Qup "7 sIn 00,
m=1,3k=0,1/3

where

U = —(3k +2)[m — (2 + m)£

B = Bk +1)m — [Bk(m + 1) + (2 + m)]F

Yo = M — (3k +m + 2)¢

O = —m(m — 1) + [(m + 1)(m + 2) + %k(k + 1)]7

t =cosft

3943

(44c¢)

(48a)

(48Db)

Substituting (46) into (23) and (24) one obtains the non-zero components of the tensor ﬁz/k and the tensor

Zij
ﬁrrr = 6b3Em/V4

ﬁ(')ﬁr = ﬁr(%) = ﬁ(')(?r = ﬁrq‘)(/) = mmp = ﬁq’)q‘)r = _3b3Em / rt

)_Cij:()

(49a)
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Substituting (40c) to (23) and (24), we can obtain

Here

. 0 o0 .
ﬁrrr = Z Z Eamkp1+ktm71Alnzk/r
m=1,3k=0,1/3
'~ SR Y Itk ym=2 o
T = > > Bayp ™" 2sin 045, /r
m=1,3k=0,1/3
P P 0 e - 1+k 2
Hror = Norr = Z Z S P =2 sin 0A3mk/r
m=1,3k=0,1/3
> > - S 1+k 1
Heoo = Torg = 2 D Smep 0" Ay /7
m=1,3k=0,1/3
. . oo x . 1 k ]
Nepp = Nprp = 21:3 E/ Eapp"™ " Asyi /7
m=1,3k=0,1/3
2 N 1+k ym—1
Moor = D > Eawp ™" Ao /1
m=1,3k=0,1/3
: R 1tk m—2 o
Nooo = Z Z Sy P THEm=2 8in 6A7mk/r
m=1,3k=0,1/3
> ~ - S Ltk gm—2 o3
Hopp = Npop = 2 2. Eamp "> sin 0Ag,u /v
m=1,3k=0,1/3
= o S k+1 1
’1¢¢r = Z Z Edpi P + " A9mk/r
m=1,3k=0,1/3
; SR I+k m=2 o3
Moppo = 2 2o Samp" "2 sin 0410, /7
m=1,3k=0,1/3
y = S 2 o 1+k
Yoo = 21:3 E/ B t" > sin 0p' * hyy /21
m=1,3k=0,1/3
00 00 .
X0¢ = Z Eamkt'”*lp”"hlmk/Zr
m=1,3k=0,1/3
o0 00 . .
Xor = > > Bamt™ *sin0p" (3 + 3k)hy /2r
m=1,3k=0,1/3
2 1, 1+k
X¢9 - Z Z :'amktm_ p + h2mk/2r
m=1,3k=0,1/3

A = 3(2 + Sk + 3K)m — 3(2 + Sk + 3K (2 + m)#

Ay = =9k (2 + Sk + 3k*) ¢

Az = =3m(1 +k)(1 — m) — 3(1 +k)(2 + 3k + 3m + m*)F?

Ay = —m(1 + k) (% + 3) + 3(1 + k) (2 + 3k + m + 3km)£*

Aspie = =3m(1 4+ k) +3(1 +k)(2 + 3k +m)E

Agmi = (m* + 4m?* + 8m + 9km 4 12k + 8)¢* + (m* — 3m® + 2m)t™* — (2m* + m* + 9km + 6)

Agpe = m(2 + 3k — 2m — 3km) + (4 + 12k + 9k* 4 6m + 6km + 2m* + 3km?*)¢*

(49b)
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Agpi = m(1 —m) + (m? + 3m + 3km + 3k 4 2)£
Agyi = —m(2 + 3k +m) + (4 +m)(2 + 3k +m)t?
Myomi = 3k(2 + 3k +m)#
B = m(1 —m) + (m* + 3m — 9k* — 3k + 2)F

howie = (2m* + m? — 9k* — 3km + 3m) — (m* + 4m* — 9k*m — 3km + 5Sm — 9k* — 3k + 2)F
— (m® = 3m® +2m) /P

According to matrix plastic incompressibility, we obtain
- 1 - -
’72{/{ 4 (0l + 04Tlyp) = 0
J ¥ 1 L L
Mijr = 3 (Ot jpp + Ojictlypp) = 0

Substituting (49) and (50) to (7)—(10) yields

= /(1 - =12 =13 ..
T =Ty =TTy =Ty =0 i, k=r0,¢

and
L;E’L) _ Z Eankt'” 3 1+kf1mk/15r
m=1,3k=0,1/3
(1 (1) (1 e
g = i = oy = 32 > Eamt™ 5l /157
S() _a() _ () o S & w3 Ik
Norp = Nrpp = Noppr = m;%:%ﬂua il f%mk/157’
ﬁé)(ljl()) = Z Z Eamktm ZSIH 0p1+kg1m/»/15r
m=1,3k=0,1/3
(1) e & -2 1+k
r’rﬁr - r’9;r = rlrrﬁ - Z Z ‘:‘amktm Sln QP + mek/lsr
m=1,3k=0,1/3
(1) ozl () e e .
Npop = Nogp = Npgpo = m;}}{i%/;amkfm >sin 9P1+kg3mk/15’”
where

3945

(50a)

(50b)

(51a)

(51b)

Simk = =361 (m* + 43m” + 12m’k + 36m°k> + T2k + 144k + 64) + 3£ [2m* + 2m” + 4m(8 + 18k + 9K%)]

—3(m® — 3m* + 2m)

Somk = 1 [4m® + 15m” + (99K + 168k + 62)m + 12(8 + 18k + 9&7)]
£ [8m* + 3m + (58 + 168k + 99k*)m] + 4m® — 12m* + 8m

Some =] — m® + (52 — 48k — 9k*)m + 12(8 + 18k + 9%°)]
— £ [2m® — 3m® — (38 + 48k + 9k )m] +m’ — 3m” + 2m

Gunk = 38 [16 + 60k + 72K% + 27K + 24m + 21km + 8m? + 12km*] + 3[8m + 12km — 8mi’

— 12km’)
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Gonk = —2[64 + 240k + 288K” + 108K + 96m + 99%km + 32m* + 33km’]
+ [33km* + 32m> — 33km — 32m]

Gamie = [16 + 60k + 72> + 27k + 24m + 36km + 8m> — 3km?] + [8m — 3km — 8m” + 3km’]

Substituting (22) to (13), we obtain the generalized effective strain rate

> 2 LYY y 8 8
é —53 & +11’7ka nuk < 12—|— 12> le/ ( 12_—12) 1]X]l

(52)

By fitting the experimental data from ultra-thin beams in bending (Stolken and Evans, 1998), thin wires in
torsion (Fleck et al., 1994), and microindentation (Stelmashenko et al., 1993; Ma and Clark, 1995; Nix,

1997), Begley and Hutchinson (1998) suggested

1 1 5
I —gl, I _El’ I = ﬁl
where [ is the characteristic length of matrix.
Substituting (53) into (52) yields

2., P oy 2P
& =34 & +6411,,k i +Tx,,x,,

According to (40a) and noting the plastic incompressibility, we can easily obtain
o . kS X . /(1 X . . > X
8:’] =& =& T & ’1;]('1]() = ﬁg‘k> + '75‘11() Xf’j =Xij = Xij T Xij
Substituting (55) into (54) obtains
2

> 2'_ b kN b 12 = /(1 /(1 = /(1 ~1(1 21 - b N b
éi =3 (&) + &;) (& + &) + 64 (’7,15'/{) + nis'k))(niﬁ'k) + rliﬁ'k)) + 3 (Xij + Xij)(Xij + Xij) =

where
=2 2-_'_ lz;l;’l 212._._
& = gSijS[j + a”lg'k)niﬁ'k) + TXUX"/’
%) 4= = 2 2 /(1 42 >
o = ¢+ §3ij811 32 nt/k nl/k 5 X’/XU
= =
Ce
and
% 2. . 12;1'~/1 212L'~
=388+ 4 i i + 3 Xijkij

Substituting (56) into (18) and noting Ve = 37mb°, we can easily obtain

) i (n+1)/2
d 1 600-0 / ée(l +o ) dv
22
Veelt J v Veelr n 1) Vin fo

_ 3a0&," " P i) e (n11)/2 2
_2(n+1)b3n/ smOdO/a & (1+a) r=dr

E(+ o)

(53)

(57)

If weassumea* < 1, (1 +a ) (072 can be expanded by Taylor series and can be approximately expressed as
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1
n—; ar (58)

(1 +a*)(n+l)/2 ~1 +

Substituting (58) into (57) yields

B 300&," " P i) 300" [T by
¢72(n+1)b3n/0 sm@df)/a & rdr+ 4, sm@d@/a & a'rdr (59)

For convenience, we introduce the following dimensionless factors

: 3 s
w:.ZA:3Em x:.z—A:a)<é> o =2 f:(f) izl (60)

where f is the void volume fraction, Z is the dimensionless length scale of the porous material relating to the
characteristic length / of matrix material and the radius a of microvoids.
According to (47)-(49) and (51), we can obtain

2. . 44> A . :
& :*gijgijzi_*gh(t)_"gz

¢ 3 o P (61a)

. 2. . > 00 00 00
gﬁ = ggijgij = Ez Z Z Z Z /{1mkn]tm+n—4pk+l+2amkanl (61b)

== (61c)

ﬁ;l(llc)ﬁiﬁll{) = 22 Z Z Z Z )”2mknltm+”74pk+l+2amkanl (61d)

m=1,3k=0,1/3n=131=0,1/3

Z/Z,‘ =0 (6le)

JLC,',')L(U = EZ i i i i ;*3mnkltm+n_4pk+l+2amkanl (61f)

étjgl/ - 52 Z Z Jlm t" lpk+1amk (61g)
m=1,3k=0,1/3
D D AN et
m=1,3k=0,1/3
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where
t =cosf
h(t) = 622 — 2
R 2 .
Amkl = 3 [kt + BBt + Vi) = (1 = )00 /2]
R 1 x \2/3[1
Kominl = <15 : (5) L—z (fimicfint + 3fomkfont + 3f3mifont)
+ (1 = 2) (g1 + 382m&om + 3g3mkg3nl):|
R 1 X \2/3 _
A3mknl = 6/12(&) { [1 +9(1 + k)2 -9(1 + k)ztz]hlmkhlnl +t 2h2mkh2nl}
Jlmk = _zamkx + 2[(ﬁmk - 5mk) + (fxmk - ﬂmk + 5mk)t2]
1 . 2/3 /3 3
Jomk = 160 AZ( ) (Eﬁmk — Eﬁnzk _flmk)x/tz
Substituting (56), (60) and (61) into (59) leads to
P=D+ (62a)
and
. - n+1 . - n+l
b — 0o = U, &= 0o = o (62b)
(n+1)\ & (n+1)\ &
where

U* = 4 Z Z Z Z Amkalamkanl + Z Z mk Amk
m=13 k=0,1/3 n=13 [=0,1/3 m=13 k=0,1/3
mkn ! dr o A" j~1mknl + )v2mkn1 + )~3mknl)tm+n 4Pk+l+2 dx,
-1 x?
1 n— 1 1 k+1
A (Jimk + Jomi )"
mknl—/df/ 1k+22k) 4 dr,
1

- /3 1/2
Sl |, ox 45 x ?
A—E—x h()+1+128}

It is worth noting that the assumed displacement fields (40) only meet the displacement compatibility
condition. For the actual displacement field, it must additionally meet the mechanical equilibrium condition
and the displacement boundary conditions (44b) or (44c). This can be achieved by minimizing the plastic
potential @ with the boundary constraint conditions (44c). To this end, the Lagrange multiplier method is

adopted to determine the undetermined coefficients a,,;.
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According to (60), the boundary conditions (44c) can be rewritten as follows:

S @/ =0 > kawfT =0, m=135,... (63)
k=0,1/32/3 k=0,1/3.2/3

To make the plastic potential @ minimum under the constraint conditions (63), the following governing
equations must be satisfied:

a<<p+ PRSI DRTTLES Sr'S kamkf"“> / 0a, =0 (64)
m=13

k=0,1/3 m=13  k=01/3

where 7,, and w,, are the Lagrange multipliers, respectively.

Apparently, the relations (63) and (64) are a system of linear algebraic equations in the unknown co-
efficients a,,,. Once the coefficients a,, are determined by numerical calculation, an approximate solution of
the actual displacement field can be obtained. To obtain the coefficients a,,, the double series of the trial
field (40c) are truncated and the terms remaining in the approximate displacement fields correspond to
k=0,1/3,...,(K—1)/3and m=1,3,...,(2M — 1). As a part of the routine to calculate the coefficients
a., 1t 1s essential to perform accurate integrations of @ over the volume V;, for the success of the above
method. To do so, the integral domain is divided into 200 x 200 subdomains and in each subdomain the
third-order Gaussian integrations have been performed.

3.2. The constitutive potential of porous materials
Similar with the Gurson model, the constitutive potential of the porous material can be expressed as a

function of the macroscopic mean stress X, and effective stress X.. For this purpose, we substitute (62) into
(19) and can obtain

5 211+222+2331<2 ad§+aq&>g o (& " + T
" 3 3\ 0E; 0OFs; 3(1+n)\ ¢ dw
©

o E ! 4+ U
26:23372“:—(1—111) (—) AY T )
0

_ ~ 0
1+n)(U +U) —w
(140U +T) _
To obtain the generalized mean stress &, and the mean strain rate &, of the matrix material, the concept
of plastic work rate equality is introduced as

(65)

oZibo = [ (o4 ity + <+ i) av = e 1) [ pdv = (4 7o
Veenl

Veen

—
=)
fla’

n+l1
= I/::ellzoé()(é > (U +0) (66)

0

Considering that the mean stress X, and the mean strain rate &, of the matrix material should satisfy the
plastic constitutive relation (11) and noting the Eq. (66), we obtain easily

(2)- (B - [Pl @) @

< ViéoZo B (1 —f)f:g

n

or
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. E n U n/(n+1)

where U* = U* + U*.
Substituting (67b) into (65) yields

2 oU* *
3 o :i ou
( U )n/(l+n) 30 0w

5. (4nU —ow | :
S )ﬂ/(l-%—n):& (1+I’I)U —w

ouU*
ow

n/(1+n)

where o = (1 + n)(ﬂ})

Eliminating the additional parameter o from the formula (68), we can obtain the size-dependent plastic
potential of porous material as follows:

2o Xy
(p(z),fo,/l,n,f>—0 (69)

Obviously, it is difficult to explicitly express the potential function (69) as classical Gurson model. For
this reason, the Gaussian integration method must be adopted to calculate U* in the expression (68) and
thus obtain the yield loci ¢ = 0 or X./%y ~ 21, /2.

Generally speaking, the precision of displacement field (40) directly depends on the terms selected. Fig. 2
compares the influences of the number of terms taken on the curves X./X ~ X1, /%o. It can be seen easily
that, for the displacement field (40), the solution corresponding to K = M = 4 is in good agreement with the
solution corresponding to K = M = 3. This means that when K = M = 3, the solution is a very good ap-
proximation of the actual displacement field. If we carefully review the results of a two-terms solution (only
including the terms #; in (40) thus not a self-contained displacement field) by Huang et al. (2002), it is easy
to see that although the two-terms solution is not self-contained, it is accurate enough. This powerfully
proves that the assumption ¢* < 1 made in the formula (58) is reasonable.

1.0

0.8

0.6 n=0.1,2=1.0,f=0.001
NO
PR K=4,M=4

0.4 o K=3,M=3

0.2

0
0 1 2 3 4 5 6
Zm/ZO

Fig. 2. The influences of the number of terms taken in (40) on the plasticity potential.
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1.2 1.2
n=0.1, f =0.001 0 0.0 n=0.2, f =0.001 o 0.0
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25 e 25
0.8 B 3.0 0.8 ® 3.0
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406 “ o6
Al W
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|
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(a) /%, (b) Z/Z

Fig. 3. The effects of void size on the plasticity potentials for: (a) n = 0.1 and (b) n = 0.2.

Fig. 3 shows the influences of the dimensionless characteristic length 4 and the power-hardening exponent
n on the macroscopic yield loci . /%y ~ X,/Z of the porous materials. For the purposes of comparison, the
results corresponding to the Gurson model are also displayed together. From Fig. 3, it can be easily seen that
the dimensionless length factors /4 have very obvious influences on the yield loci X, /Xy ~ %,/ especially
when the triaxial stress levels X,/ are higher. On the other hand, for the same triaxial stress level, with the
dimensionless length factors 1 = //a increasing, the corresponding yield stress X. /X, becomes higher. This
means that, for a fixed void volume fraction f,, the porous materials with smaller voids possess higher yield
stress, especially when the void size @ is comparable with the characteristic length /.

As everyone knows, the void growth can be described by o* =2 = % (here ¥, denotes the volume of

S
void). Fig. 4 shows the influences of the dimensionless length factor 4 = //a on the growth of the void. The

30 25 5 0.0
n=0.2, f =0.001 :
@ =01, f=0.001 © 0.0 () 0 010
0 o 1.0 _e 15
25 e 15 A= '
R-T Model A= 20 p =20
. gg Gurson Model e 25
@ 2.
20 g 3.0 = 30
15
'3 15 '3
10
10
5 5
0 oz
0 1 2 3 4 0 1 2 3 4
INDY T /%,

Fig. 4. The effects of void size on the void growth for: (a) n = 0.1 and (b) n = 0.2.
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results associated with the Gurson model and R-T model are also presented together. For a fixed initial
void volume fraction fj, it is not difficult to see a substantial reduction of the void growth rate with A = I/a
increasing. This is to say that the void growth is size dependent, and the growth rate of smaller voids is
slower than that of larger voids. The classical plastic damage theories cannot predict the size dependence of
the void growth since they do not involve any intrinsic material length scale. Added to this, the void growth
rates predicted by the classical size-independent damage model are higher than that given by the present
scale-dependent damage model.

4. Summary

In the present paper, we have been actively engaged in the development of a size-dependent plastic
potential for porous materials. Following the same line of thought as the Gurson model, the macroscopic
responses of a representative spherical cell under remote axisymmetric triaxial tension have been carefully
investigated. To capture the size effects of local plastic deformation within the matrix, the SG constitutive
theory including the rotation and the stretch gradients by Fleck and Hutchinson (1997) has been adopted.
By means of the principle of minimum plasticity potential, the displacement field satisfying the equilibrium
equations, displacement compatibility equations and displacement boundary conditions has been com-
putationally determined by the Lagrange multiplies method. Based on this, we have obtained a size-de-
pendent plastic potential for a porous material and examined the size effect on the void growth. The results
show clearly that the void size has very important influences on the growth of spherical void, especially
when the radius a of the microvoid is comparable with the intrinsic characteristic length / of matrix. In
summary, the originality of this work consists of generalizing the classical Gurson model to include the size
effects on the void evolution and the flow stress of porous materials.

It is worth pointing out that the present model is based on the assumption that the macroscopic higher
order strain or stress on the size scale of the representative cell can be ignored. This is true when the initial
void volume fraction f; is low and the size of the cell is large. Therefore, the present model is especially
applicable to the case in which the size of void is small and the microvoids in material are very dilute.
Fortunately, with plastic deformation increasing, the microvoids with smaller size will grow gradually.
Once the radius of microvoid is much larger than the intrinsic characteristic length / of the matrix material,
the present model will automatically reduce to the size-independent Gurson model improved by Wang and
Qin (1989). Therefore, no matter whether the size of voids is small or large, the present model can provide a
better description of the growing process of microvoids.
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